
Feature Structures and
Unification Grammars

11-711 Algorithms for NLP
1 November 2018 – Part II

Linguistic features

• (Linguistic “features” vs. ML “features”.)
• Human languages usually include agreement

constraints; in English, e.g., subject/verb
– I often swim
– He often swims
– They often swim

• Could have a separate category for each minor
type: N1s, N1p, …, N3s, N3p, …
– Each with its own set of grammar rules!

A day without features…

• NP1s → Det-s N1s
• NP1p → Det-p N1p

…

• NP3s → Det-s N3s
• NP3p → Det-p N3p

…

• S1s → NP1s VP1s
• S1p → NP1p VP1p
• S3s → NP3s VP3s
• S3p → NP3p VP3p

Linguistic features

• Could have a separate category for each minor
type: N1s, N1p, … , N3s, N3p, …
– Each with its own set of grammar rules!

• Much better: represent these regularities
using independent features: number, gender,
person, …

• Features are typically introduced by lexicon;
checked and propagated by constraint
equations attached to grammar rules

Feature Structures (FSs)
Having multiple orthogonal features with values
leads naturally to Feature Structures:

[Det
[root: a]
[number: sg]]

A feature structure’s values can in turn be FSs:
[NP

[agreement: [[number: sg]
[person: 3rd]]]]

Feature Path: <NP agreement person>

Adding constraints to CFG rules

• S → NP VP
<NP number> = <VP number>

• NP → Det Nominal
<NP head> = <Nominal head>
<Det head agree> = <Nominal head agree>

FSs from lexicon, constrs. from rules
Lexicon entry:

[Det
[root: a]
[number: sg]]

• Combine to get result:
[NP [Det

[root: a]
[number: sg]]

[Nominal [number: sg] …]
[number: sg]]

Rule with constraints:
NP → Det Nominal

<NP number> = <Det number>
<NP number> = <Nominal

number>

Similar issue with VP types

Another place where grammar rules could
explode:

Jack laughed
VP → Verb for many specific verbs

Jack found a key
VP → Verb NP for many specific verbs

Jack gave Sue the paper
VP → Verb NP NP for many specific verbs

Verb Subcategorization

+none -- Jack laughed
+np -- Jack found a key
+np+np -- Jack gave Sue the paper
+vp:inf -- Jack wants to fly
+np+vp:inf -- Jack told the man to go
+vp:ing -- Jack keeps hoping for the
best
+np+vp:ing -- Jack caught Sam
looking at his desk
+np+vp:base -- Jack watched Sam
look at his desk
+np+pp:to -- Jack gave the key to the
man

+pp:loc -- Jack is at the store
+np+pp:loc -- Jack put the box in the
corner
+pp:mot -- Jack went to the store
+np+pp:mot -- Jack took the hat to
the party
+adjp -- Jack is happy
+np+adjp -- Jack kept the dinner hot
+sthat -- Jack believed that the world
was flat
+sfor -- Jack hoped for the man to
win a prize

Verbs have sets of allowed args. Could have many sets of VP rules.
Instead, have a SUBCAT feature, marking sets of allowed arguments:

50-100 possible frames for English; a single verb can have several.
(Notation from James Allen “Natural Language Understanding”)

Frames for “ask”
(in J+M notation)

Adding transitivity constraint

• S → NP VP
<NP number> = <VP number>

• NP → Det Nominal
<NP head> = <Nominal head>
<Det head agree> = <Nominal head agree>

• VP → Verb NP
<VP head> = <Verb head>
<VP head subcat> = +np (which means transitive)

Applying a verb subcat feature
Lexicon entry:

[Verb
[root: found]
[head: find]
[subcat: +np]]

• Combine to get result:
[VP [Verb

[root: found]
[head: find]
[subcat: +np]]

[NP …]
[head: find [subcat: +np]]]]

Rule with constraints:
VP → Verb NP

<VP head> = <Verb head>
<VP head subcat> = +np

Relation to LFG constraint notation

• VP → Verb NP
<VP head> = <Verb head>
<VP head subcat> = +np

from JM book is the same as the LFG expression

• VP → Verb NP
(↑ head) = (↓ head)
(↑ head subcat) = +np

Unification

• Merging FSs (and failing if not possible) is
called Unification

• Simple FS examples:
[number sg]⊔[number sg] = [number sg]
[number sg]⊔[number pl] FAILS
[number sg]⊔[number []] = [number sg]
[number sg]⊔[person 3rd] = [number sg,

person 3rd]

New kind of “=” sign

• Already had two meanings in programming:
– “:=“ means “make the left be equal to the right”
– “==” means “the left and right happen to be equal”

• Now, a third meaning:
– ⊔ “=” means “make the left and the right be the

same thing (from now on)”

Recap: applying constraints
Lexicon entry:

[Det
[root: a]
[number: sg]]

• Combine to get result:
[NP [Det

[root: a]
[number: sg]]

[Nominal [number: sg] …]
[number: sg]]

Rule with constraints:
NP → Det Nominal

<NP number> = <Det number>
<NP number> = <Nominal

number>

Turning constraint eqns. into FS
Lexicon entry:

[Det
[root: a]
[number: sg]]

• Combine to get result:
[NP [Det

[root: a]
[number: sg]]

[Nominal [number: sg]
…]

[number: sg]]

Rule with constraints:
NP → Det Nominal

<NP number> = <Det number>
<NP number> = <Nominal

number>
becomes:

[NP [Det [number: (1)]]
[Nominal

[number: (1)]
…]

[number: (1)]]

Another example

This (oversimplified) rule:
S → NP VP

<S subject> = NP
<S agreement> = <S subject agreement>

turns into this DAG:
[S [subject (1)

[agreement (2)]]
[agreement (2)]
[NP (1)]
[VP]

Unification example without “EQ“
[agreement [number sg],
subject [agreement [number sg]]]
⊔[subject [agreement [person 3rd,

number sg]]]
= [agreement [number sg],

subject [agreement [person 3rd,
number sg]]]

• <agreement> is (initially) equal to <subject
agreement>, but not EQ

• So not equal anymore after operation

Unification example with “EQ“

[agreement (1), subject [agreement (1)]]
⊔[subject [agreement [person 3rd, number sg]
= [agreement (1),

subject [agreement (1) [person 3rd,
number sg]]]

• <agreement> is <subject agreement> (EQ), so
they are equal

• and stay equal, always, in the future

Representing FSs as DAGs

• Taking feature paths seriously
• May be easier to think about than numbered

cross-references in text
• [cat NP, agreement [number sg, person 3rd]]

Re-entrant FS as DAGs
• [cat S, head [agreement (1) [number sg,

person 3rd],
subject [agreement (1)]]]

HEAD

Seems tricky. Why bother?

• Unification allows the systems that use it to
handle many complex phenomena in “simple”
elegant ways:
– There seems to be a dog in the yard.
– There seem to be dogs in the yard

• Unification makes this work smoothly.
– Make the Subjects of the clauses EQ:

<VP subj> = <VP COMP subj>
[VP [subj: (1)] [COMP [subj: (1)]]]

– (Ask Lori Levin for LFG details.)

Real Unification-Based Parsing

• X0 → X1 X2
<X0 cat> = S, <X1 cat> = NP, <X2 cat> = VP
<X1 head agree> = <X2 head agree>
<X0 head> = <X2 head>

• X0 → X1 and X2
<X1 cat> = <X2 cat>, <X0 cat> = <X1 cat>

• X0 → X1 X2
<X1 orth> = how, <X2 sem> = <SCALAR>

Complexity

• Earley modification: “search the chart for
states whose DAGs unify with the DAG of the
completed state”. Plus a lot of copying.

• Unification parsing is “quite expensive”.
– NP-Complete in some versions.
– Early AWB paper on Turing Equivalence(!)

• So maybe too powerful?
(like GoTo or Call-by-Name?)

– Add restrictions to make it tractable:
• Tomita’s Pseudo-unification (Tomabechi too)
• Gerald Penn work on tractable HPSG: ALE

Formalities: subsumption
• Less specific FS1 subsumes more specific FS2

FS1 ⊑ FS2 (Inverse is FS2 extends FS1)
• Subsumption relation forms a semilattice,

at the top: []

[number sg] [person 3] [number pl]

[number sg, person 3]

• Unification defined wrt semilattice:
F ⊔ G = H s.t. F ⊑ H and G ⊑ H
H is the Most General Unifier (MGU)

Hierarchical Types
Hierarchical types allow values to unify too (or not):

Hierarchical subcat frames
Many verbs share subcat frames, some with

more arguments specified than others:

